
OVERVIEW PACKAGE CLASS USE TREE DEPRECATED INDEX HELP
Java™ Platform
Standard Ed. 8

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compact1, compact2, compact3

java.util

Interface Collection<E>

Type Parameters:

E - the type of elements in this collection

All Superinterfaces:

Iterable<E>

All Known Subinterfaces:

BeanContext, BeanContextServices, BlockingDeque<E>, BlockingQueue<E>, Deque<E>,
List<E>, NavigableSet<E>, Queue<E>, Set<E>, SortedSet<E>, TransferQueue<E>

All Known Implementing Classes:

AbstractCollection, AbstractList, AbstractQueue, AbstractSequentialList, AbstractSet,
ArrayBlockingQueue, ArrayDeque, ArrayList, AttributeList, BeanContextServicesSupport,
BeanContextSupport, ConcurrentHashMap.KeySetView, ConcurrentLinkedDeque,
ConcurrentLinkedQueue, ConcurrentSkipListSet, CopyOnWriteArrayList,
CopyOnWriteArraySet, DelayQueue, EnumSet, HashSet, JobStateReasons,
LinkedBlockingDeque, LinkedBlockingQueue, LinkedHashSet, LinkedList,
LinkedTransferQueue, PriorityBlockingQueue, PriorityQueue, RoleList,
RoleUnresolvedList, Stack, SynchronousQueue, TreeSet, Vector

public interface Collection<E>
extends Iterable<E>

The root interface in the collection hierarchy. A collection represents a group of objects, known as its
elements. Some collections allow duplicate elements and others do not. Some are ordered and others
unordered. The JDK does not provide any direct implementations of this interface: it provides
implementations of more specific subinterfaces like Set and List. This interface is typically used to
pass collections around and manipulate them where maximum generality is desired.

Bags or multisets (unordered collections that may contain duplicate elements) should implement this
interface directly.

All general-purpose Collection implementation classes (which typically implement Collection
indirectly through one of its subinterfaces) should provide two "standard" constructors: a void (no
arguments) constructor, which creates an empty collection, and a constructor with a single argument
of type Collection, which creates a new collection with the same elements as its argument. In effect,
the latter constructor allows the user to copy any collection, producing an equivalent collection of the
desired implementation type. There is no way to enforce this convention (as interfaces cannot contain
constructors) but all of the general-purpose Collection implementations in the Java platform
libraries comply.

The "destructive" methods contained in this interface, that is, the methods that modify the collection
on which they operate, are specified to throw UnsupportedOperationException if this collection does

not support the operation. If this is the case, these methods may, but are not required to, throw an
UnsupportedOperationException if the invocation would have no effect on the collection. For
example, invoking the addAll(Collection) method on an unmodifiable collection may, but is not
required to, throw the exception if the collection to be added is empty.

Some collection implementations have restrictions on the elements that they may contain. For
example, some implementations prohibit null elements, and some have restrictions on the types of
their elements. Attempting to add an ineligible element throws an unchecked exception, typically
NullPointerException or ClassCastException. Attempting to query the presence of an ineligible
element may throw an exception, or it may simply return false; some implementations will exhibit the
former behavior and some will exhibit the latter. More generally, attempting an operation on an
ineligible element whose completion would not result in the insertion of an ineligible element into the
collection may throw an exception or it may succeed, at the option of the implementation. Such
exceptions are marked as "optional" in the specification for this interface.

It is up to each collection to determine its own synchronization policy. In the absence of a stronger
guarantee by the implementation, undefined behavior may result from the invocation of any method
on a collection that is being mutated by another thread; this includes direct invocations, passing the
collection to a method that might perform invocations, and using an existing iterator to examine the
collection.

Many methods in Collections Framework interfaces are defined in terms of the equals method. For
example, the specification for the contains(Object o) method says: "returns true if and only if this
collection contains at least one element e such that (o==null ? e==null : o.equals(e))." This
specification should not be construed to imply that invoking Collection.contains with a non-null
argument o will cause o.equals(e) to be invoked for any element e. Implementations are free to
implement optimizations whereby the equals invocation is avoided, for example, by first comparing
the hash codes of the two elements. (The Object.hashCode() specification guarantees that two
objects with unequal hash codes cannot be equal.) More generally, implementations of the various
Collections Framework interfaces are free to take advantage of the specified behavior of underlying
Object methods wherever the implementor deems it appropriate.

Some collection operations which perform recursive traversal of the collection may fail with an
exception for self-referential instances where the collection directly or indirectly contains itself. This
includes the clone(), equals(), hashCode() and toString() methods. Implementations may
optionally handle the self-referential scenario, however most current implementations do not do so.

This interface is a member of the Java Collections Framework.

Implementation Requirements:

The default method implementations (inherited or otherwise) do not apply any
synchronization protocol. If a Collection implementation has a specific synchronization
protocol, then it must override default implementations to apply that protocol.

Since:

1.2

See Also:

Set, List, Map, SortedSet, SortedMap, HashSet, TreeSet, ArrayList, LinkedList, Vector,
Collections, Arrays, AbstractCollection

Method Summary

All Methods Instance Methods Abstract Methods Default Methods

Modifier and Type Method and Description

boolean add(E e)

Ensures that this collection contains the specified element (optional
operation).

boolean addAll(Collection<? extends E> c)

Adds all of the elements in the specified collection to this collection
(optional operation).

void clear()

Removes all of the elements from this collection (optional
operation).

boolean contains(Object o)

Returns true if this collection contains the specified element.

boolean containsAll(Collection<?> c)

Returns true if this collection contains all of the elements in the
specified collection.

boolean equals(Object o)

Compares the specified object with this collection for equality.

int hashCode()

Returns the hash code value for this collection.

boolean isEmpty()

Returns true if this collection contains no elements.

Iterator<E> iterator()

Returns an iterator over the elements in this collection.

default Stream<E> parallelStream()

Returns a possibly parallel Stream with this collection as its source.

boolean remove(Object o)

Removes a single instance of the specified element from this
collection, if it is present (optional operation).

boolean removeAll(Collection<?> c)

Removes all of this collection's elements that are also contained in
the specified collection (optional operation).

default boolean removeIf(Predicate<? super E> filter)

Removes all of the elements of this collection that satisfy the given
predicate.

boolean retainAll(Collection<?> c)

Retains only the elements in this collection that are contained in the
specified collection (optional operation).

int size()

Returns the number of elements in this collection.

default Spliterator<E> spliterator()

Creates a Spliterator over the elements in this collection.

default Stream<E> stream()

Returns a sequential Stream with this collection as its source.

Object[] toArray()

Returns an array containing all of the elements in this collection.

<T> T[] toArray(T[] a)

Returns an array containing all of the elements in this collection; the
runtime type of the returned array is that of the specified array.

Methods inherited from interface java.lang.Iterable

forEach

Method Detail

size

int size()

Returns the number of elements in this collection. If this collection contains more than
Integer.MAX_VALUE elements, returns Integer.MAX_VALUE.

Returns:

the number of elements in this collection

isEmpty

boolean isEmpty()

Returns true if this collection contains no elements.

Returns:

true if this collection contains no elements

contains

boolean contains(Object o)

Returns true if this collection contains the specified element. More formally, returns true if and
only if this collection contains at least one element e such that
(o==null ? e==null : o.equals(e)).

Parameters:

o - element whose presence in this collection is to be tested

Returns:

true if this collection contains the specified element

Throws:

ClassCastException - if the type of the specified element is incompatible with this

ClassCastException - if the type of the specified element is incompatible with this

collection (optional)

NullPointerException - if the specified element is null and this collection does

not permit null elements (optional)

iterator

Iterator<E> iterator()

Returns an iterator over the elements in this collection. There are no guarantees concerning the

order in which the elements are returned (unless this collection is an instance of some class that

provides a guarantee).

Specified by:

iterator in interface Iterable<E>

Returns:

an Iterator over the elements in this collection

toArray

Object[] toArray()

Returns an array containing all of the elements in this collection. If this collection makes any

guarantees as to what order its elements are returned by its iterator, this method must return

the elements in the same order.

The returned array will be "safe" in that no references to it are maintained by this collection. (In

other words, this method must allocate a new array even if this collection is backed by an array).

The caller is thus free to modify the returned array.

This method acts as bridge between array-based and collection-based APIs.

Returns:

an array containing all of the elements in this collection

toArray

<T> T[] toArray(T[] a)

Returns an array containing all of the elements in this collection; the runtime type of the

returned array is that of the specified array. If the collection fits in the specified array, it is

returned therein. Otherwise, a new array is allocated with the runtime type of the specified

array and the size of this collection.

If this collection fits in the specified array with room to spare (i.e., the array has more elements

than this collection), the element in the array immediately following the end of the collection is

set to null. (This is useful in determining the length of this collection only if the caller knows

that this collection does not contain any null elements.)

If this collection makes any guarantees as to what order its elements are returned by its

iterator, this method must return the elements in the same order.

Like the toArray() method, this method acts as bridge between array-based and collection-

Like the toArray() method, this method acts as bridge between array-based and collection-
based APIs. Further, this method allows precise control over the runtime type of the output
array, and may, under certain circumstances, be used to save allocation costs.

Suppose x is a collection known to contain only strings. The following code can be used to dump
the collection into a newly allocated array of String:

 String[] y = x.toArray(new String[0]);

Note that toArray(new Object[0]) is identical in function to toArray().

Type Parameters:

T - the runtime type of the array to contain the collection

Parameters:

a - the array into which the elements of this collection are to be stored, if it is

big enough; otherwise, a new array of the same runtime type is allocated for this

purpose.

Returns:

an array containing all of the elements in this collection

Throws:

ArrayStoreException - if the runtime type of the specified array is not a supertype

of the runtime type of every element in this collection

NullPointerException - if the specified array is null

add

boolean add(E e)

Ensures that this collection contains the specified element (optional operation). Returns true if
this collection changed as a result of the call. (Returns false if this collection does not permit
duplicates and already contains the specified element.)

Collections that support this operation may place limitations on what elements may be added to
this collection. In particular, some collections will refuse to add null elements, and others will
impose restrictions on the type of elements that may be added. Collection classes should clearly
specify in their documentation any restrictions on what elements may be added.

If a collection refuses to add a particular element for any reason other than that it already
contains the element, it must throw an exception (rather than returning false). This preserves
the invariant that a collection always contains the specified element after this call returns.

Parameters:

e - element whose presence in this collection is to be ensured

Returns:

true if this collection changed as a result of the call

Throws:

UnsupportedOperationException - if the add operation is not supported by this

collection

ClassCastException - if the class of the specified element prevents it from being

added to this collection

NullPointerException - if the specified element is null and this collection does

NullPointerException - if the specified element is null and this collection does

not permit null elements

IllegalArgumentException - if some property of the element prevents it from being

added to this collection

IllegalStateException - if the element cannot be added at this time due to

insertion restrictions

remove

boolean remove(Object o)

Removes a single instance of the specified element from this collection, if it is present (optional
operation). More formally, removes an element e such that
(o==null ? e==null : o.equals(e)), if this collection contains one or more such elements.
Returns true if this collection contained the specified element (or equivalently, if this collection
changed as a result of the call).

Parameters:

o - element to be removed from this collection, if present

Returns:

true if an element was removed as a result of this call

Throws:

ClassCastException - if the type of the specified element is incompatible with this

collection (optional)

NullPointerException - if the specified element is null and this collection does

not permit null elements (optional)

UnsupportedOperationException - if the remove operation is not supported by this

collection

containsAll

boolean containsAll(Collection<?> c)

Returns true if this collection contains all of the elements in the specified collection.

Parameters:

c - collection to be checked for containment in this collection

Returns:

true if this collection contains all of the elements in the specified collection

Throws:

ClassCastException - if the types of one or more elements in the specified

collection are incompatible with this collection (optional)

NullPointerException - if the specified collection contains one or more null

elements and this collection does not permit null elements (optional), or if the

specified collection is null.

See Also:

contains(Object)

contains(Object)

addAll

boolean addAll(Collection<? extends E> c)

Adds all of the elements in the specified collection to this collection (optional operation). The
behavior of this operation is undefined if the specified collection is modified while the operation
is in progress. (This implies that the behavior of this call is undefined if the specified collection
is this collection, and this collection is nonempty.)

Parameters:

c - collection containing elements to be added to this collection

Returns:

true if this collection changed as a result of the call

Throws:

UnsupportedOperationException - if the addAll operation is not supported by this

collection

ClassCastException - if the class of an element of the specified collection

prevents it from being added to this collection

NullPointerException - if the specified collection contains a null element and this

collection does not permit null elements, or if the specified collection is null

IllegalArgumentException - if some property of an element of the specified

collection prevents it from being added to this collection

IllegalStateException - if not all the elements can be added at this time due to

insertion restrictions

See Also:

add(Object)

removeAll

boolean removeAll(Collection<?> c)

Removes all of this collection's elements that are also contained in the specified collection
(optional operation). After this call returns, this collection will contain no elements in common
with the specified collection.

Parameters:

c - collection containing elements to be removed from this collection

Returns:

true if this collection changed as a result of the call

Throws:

UnsupportedOperationException - if the removeAll method is not supported by this

collection

ClassCastException - if the types of one or more elements in this collection are

incompatible with the specified collection (optional)

NullPointerException - if this collection contains one or more null elements and

NullPointerException - if this collection contains one or more null elements and

the specified collection does not support null elements (optional), or if the

specified collection is null

See Also:

remove(Object), contains(Object)

removeIf

default boolean removeIf(Predicate<? super E> filter)

Removes all of the elements of this collection that satisfy the given predicate. Errors or runtime
exceptions thrown during iteration or by the predicate are relayed to the caller.

Implementation Requirements:

The default implementation traverses all elements of the collection using its

iterator(). Each matching element is removed using Iterator.remove(). If the

collection's iterator does not support removal then an

UnsupportedOperationException will be thrown on the first matching element.

Parameters:

filter - a predicate which returns true for elements to be removed

Returns:

true if any elements were removed

Throws:

NullPointerException - if the specified filter is null

UnsupportedOperationException - if elements cannot be removed from this collection.

Implementations may throw this exception if a matching element cannot be removed or

if, in general, removal is not supported.

Since:

1.8

retainAll

boolean retainAll(Collection<?> c)

Retains only the elements in this collection that are contained in the specified collection
(optional operation). In other words, removes from this collection all of its elements that are not
contained in the specified collection.

Parameters:

c - collection containing elements to be retained in this collection

Returns:

true if this collection changed as a result of the call

Throws:

UnsupportedOperationException - if the retainAll operation is not supported by this

collection

ClassCastException - if the types of one or more elements in this collection are

incompatible with the specified collection (optional)

NullPointerException - if this collection contains one or more null elements and

NullPointerException - if this collection contains one or more null elements and

the specified collection does not permit null elements (optional), or if the

specified collection is null

See Also:

remove(Object), contains(Object)

clear

void clear()

Removes all of the elements from this collection (optional operation). The collection will be
empty after this method returns.

Throws:

UnsupportedOperationException - if the clear operation is not supported by this

collection

equals

boolean equals(Object o)

Compares the specified object with this collection for equality.

While the Collection interface adds no stipulations to the general contract for the
Object.equals, programmers who implement the Collection interface "directly" (in other
words, create a class that is a Collection but is not a Set or a List) must exercise care if they
choose to override the Object.equals. It is not necessary to do so, and the simplest course of
action is to rely on Object's implementation, but the implementor may wish to implement a
"value comparison" in place of the default "reference comparison." (The List and Set interfaces
mandate such value comparisons.)

The general contract for the Object.equals method states that equals must be symmetric (in
other words, a.equals(b) if and only if b.equals(a)). The contracts for List.equals and
Set.equals state that lists are only equal to other lists, and sets to other sets. Thus, a custom
equals method for a collection class that implements neither the List nor Set interface must
return false when this collection is compared to any list or set. (By the same logic, it is not
possible to write a class that correctly implements both the Set and List interfaces.)

Overrides:

equals in class Object

Parameters:

o - object to be compared for equality with this collection

Returns:

true if the specified object is equal to this collection

See Also:

Object.equals(Object), Set.equals(Object), List.equals(Object)

hashCode

int hashCode()

Returns the hash code value for this collection. While the Collection interface adds no
stipulations to the general contract for the Object.hashCode method, programmers should take
note that any class that overrides the Object.equals method must also override the
Object.hashCode method in order to satisfy the general contract for the Object.hashCode
method. In particular, c1.equals(c2) implies that c1.hashCode()==c2.hashCode().

Overrides:

hashCode in class Object

Returns:

the hash code value for this collection

See Also:

Object.hashCode(), Object.equals(Object)

spliterator

default Spliterator<E> spliterator()

Creates a Spliterator over the elements in this collection. Implementations should document
characteristic values reported by the spliterator. Such characteristic values are not required to
be reported if the spliterator reports Spliterator.SIZED and this collection contains no
elements.

The default implementation should be overridden by subclasses that can return a more efficient
spliterator. In order to preserve expected laziness behavior for the stream() and
parallelStream()} methods, spliterators should either have the characteristic of IMMUTABLE or
CONCURRENT, or be late-binding. If none of these is practical, the overriding class should describe
the spliterator's documented policy of binding and structural interference, and should override
the stream() and parallelStream() methods to create streams using a Supplier of the
spliterator, as in:

 Stream<E> s = StreamSupport.stream(() -> spliterator(), spliteratorCharacteristics)

These requirements ensure that streams produced by the stream() and parallelStream()
methods will reflect the contents of the collection as of initiation of the terminal stream
operation.

Specified by:

spliterator in interface Iterable<E>

Implementation Requirements:

The default implementation creates a late-binding spliterator from the
collections's Iterator. The spliterator inherits the fail-fast properties of the
collection's iterator.

The created Spliterator reports Spliterator.SIZED.

Implementation Note:

The created Spliterator additionally reports Spliterator.SUBSIZED.

Java™ Platform

If a spliterator covers no elements then the reporting of additional characteristic
values, beyond that of SIZED and SUBSIZED, does not aid clients to control,
specialize or simplify computation. However, this does enable shared use of an
immutable and empty spliterator instance (see Spliterators.emptySpliterator()) for
empty collections, and enables clients to determine if such a spliterator covers no
elements.

Returns:

a Spliterator over the elements in this collection

Since:

1.8

stream

default Stream<E> stream()

Returns a sequential Stream with this collection as its source.

This method should be overridden when the spliterator() method cannot return a spliterator
that is IMMUTABLE, CONCURRENT, or late-binding. (See spliterator() for details.)

Implementation Requirements:

The default implementation creates a sequential Stream from the collection's
Spliterator.

Returns:

a sequential Stream over the elements in this collection

Since:

1.8

parallelStream

default Stream<E> parallelStream()

Returns a possibly parallel Stream with this collection as its source. It is allowable for this
method to return a sequential stream.

This method should be overridden when the spliterator() method cannot return a spliterator
that is IMMUTABLE, CONCURRENT, or late-binding. (See spliterator() for details.)

Implementation Requirements:

The default implementation creates a parallel Stream from the collection's
Spliterator.

Returns:

a possibly parallel Stream over the elements in this collection

Since:

1.8

OVERVIEW PACKAGE CLASS USE TREE DEPRECATED INDEX HELP
Java™ Platform
Standard Ed. 8

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains
more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and
working code examples.
Copyright © 1993, 2016, Oracle and/or its affiliates. All rights reserved. Use is subject to license terms. Also see the
documentation redistribution policy.

